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CONSTANT RADIUS MAGNETIC ACCELERATION OF A
STRONG NONNEUTRAL PROTON RING

I. Introduction

As a result of an intense experimental effort during the last year,

pulsed ion beams are presently available?s? at a peak power level in !
excess of 0.2 Terawatts at energies of about 1 MeV. However, several of

the fusion related potential applications of ion beams, including target

" 6

irradiation experiment and field reversing ion ring fusion reactors
require power levels in excess of 100 Terawatts at energies 10-10,000
MeV. Thus, it is desirable to develop methods of acceleration that

would eventually increase the energy of these intense ion beams by as

many as four orders of magnitude.

Free or adiabatic magnetic compression of electron rings at the
University of Maryland7 led to a two hundred fold increases of the
electron energy. The application of this acceleration methdd to ion
rings has been considered by Fleischmann® and Sudan and Ott®. In the
adiabatic compression the magnetic field varies with time and thus the
magnetic moment (u::Mbvi/EB, nonrelativistic) of a gyrating charged
particle is an adiabatic invariant. Therefore, the energy of the com-
pressed particles increases linearly with magnetic field. The final
value of magnetic field required to accelerate a 1 MeV proton ring of 1
meter initial major radius to about 1 GeV is in excess of 1.4 M Gauss. Ef
In a®ition, extraction and unwinding of the ring after compression into :

Note: Manuscript submitted March 10, 1977.

[}
&
&
|
!
*
'




o

YT

S T———
it

—

R e a4

a low divergence straight beam is rather difficult. The conservation of
the canonical angular momentum Pb warranties a rapid radial expansion of
the beam when a ring made up of ions with Eb#o is extracted axially
through a half-cusp. Radial extraction of the beam is also made diffi-
cult because the reduction of the beam major radius with increasing

magnetic field excludes the use of deflecting electrodes.

By contrast to the free compression, in the constrained or constant

radius magnetic acceleration the magnetic moment is not a constant of
the motion and the energy of a nonrelativistic gyrating charge particle
increases proportionally to ¥ In addition, radial extraction of the
beam can be accomplished using magnetic or electric deflecting fields.

The radius of the ring may be kept constant either by the applica-
tion of a positive, radial electric field that increases with time or by
shaping the external magnetic field in such a way that the betatron flux
conditionfn’la f.0., €B(t)> = 2Bo(t), where < B(t) > is the average
and Bo(t) the magnetic field aﬁ the orbit of thé partiéle, is satisfied.

In the first approach, the value of the radial electric field re-
quired to keep the radius of ions constant depends U@ the initial and
final value of the axial magnetic field and the initial azimuthal veloc-
ity of the ions. The value of the maximum field required for the accel-
eration of a 3 m radius ring from 2 to 1,000 MeV is about 2.5 MeV/cm.
This field is by a factor of 4 higher than the vacuum(breakdown field.
However, the breakdown in the vacuum gap may be avoided because the ex-
ternally applied axial field is higher than the critical magnetic fiela®®
required for magnetic insulation., Details about this method of accelera-

tion will be reported in a future publication.
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In this report we present theoretical results on the constant
radius acceleration of a strong, nonneutral ion ring in a modified beta-
tron field. Superimposed on the axial magnetic field that satisfies
the betatron flux condition is a strong Be field. This magnetic field
configuration was initially used in the plasma betatron,1%4716 However,
the orbit stability analysis in the plasma betatron has been restricted®
to weak electron beams. As it is shown later on, the Be field is
necessary for the stability of the orbits when the self fields of the
ring are not negligible.

At power levels ~ 10™= watts, the constant radius induction ion
acceleration competes with several collective ion acceleration schemes.
One such scheme is the ionization front'” ®acceleration process in
which an intense electron beam is used to form a single accelerating
electrostatic potential well which traps and accelerates a group of ions.
By carefully controlling the ionization rate the ions can be accelerated
in a controlled manner to energies many times the electron beam energy.
Another class of accelerators rely on the controlled acceleration of
ions trapped in a wave which is supported by an intense relativistic
electron beam. The Auto Resonant Accelerator®® (ARA) is of this type.
In the ARA the ions are trapped in a beam cyclotron wave which is
accelerated on an intense relativistic electron beam by gradually re-
ducing the guiding axial magnetic field. In the Converging Guide
Accelerator®! (CGA) a space charge wave on an intense relativistic
electron beam propagating through a cyclindrical waveguide is accelera-
ted by adiabatically decreasing the waveguide radius. 1In both the ARA

and CGA scheme the final phase velocity of the accelerated wave is

roughly equal to the electron beam velocity.

3




II. Induction Accelerations
A low density monoenergetic ion ring in a locally uniform external
axial magnetic field will-execute gyro-motion-sround-its -guiding--center. e

The particle radius is given by

v (8) =v(t)/ [ (0A®)] (1)

where Ve is the particle velocity perpendicular to the slowly changing

local magnetic field Bo’ QO=.|e|B0/Moc is the nonrelativistic ion cyclo-

Y = [l-(voe [ )2]- :

The aximuthal electric field at radius r, induced by the changing

tron frequency and

axial magnetic field is
-r
Bglr,t) = = < (), (2)

where (B) is the average value of the magnetic field within the radius r.

The rate of change of the total energy W of a charged particle of mass M
[¢]

and charge q==|el in the presence of an electric field Ee is given by

s dw

-» <
dt = Iel v.E =|e‘voe Ee’ (5)

2 o ¥
where W= M_ c“Y q. Substituting Egs. (1) and (2) into Eq. (3), it is

obtained

g-g{m [V e(t) - 11} £ %(a). @y j"

(e} -




Equation (1) is valid only for slowly changing fields, i.e., when

A o

Since Eq. (1) has been used in the derivation of Eq. (4), this equation
is also valid when the inequality in Eq. (5) is satisfied.
{ In the case of a uniform, externally magnetic field i.e.,

B (t) = < B(t) >, Eq. (4) gives

B (t)
- ] €. (o), (6)
(o]

where E&(o) = [Yoe(o) - 1] M002 is the initial ion energy, éa(t) =

[Yoe(t) - 1] Mbcz is the final ion energy and Bo(t)/Bo(o) is the ratio
of the final to the initial value of magnetic field. -Combining Egs. (1)

and (6), the major radius of the ring ro(t) is given by

r(8) = 7 () [B,(0)/B,(8)] " - (7)

TR AT T AT

Therefore, in the free or adiabatic acceleration the energy of the non-

relativistic ions increases proportionally to the applied magnetic field

and the major radius of the ring varies as Bo .

=

By contrast, when the average magnetic field is twice the local

’ field, i.e., when < B(t) > = 2Bo(t), Eq. (4) gives

Yoo(0) ¥ 1 7 [B,(t)q2
€i(t) = [Yoe(t) F 1 ] [Bo(o)] €i(0) (8)
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Hence, the ion energy in the nonrelativistic case, increases as the
square of the magnetic field. This is a significant advantage over the
free compression scheme where the energy [Eq. (6)] is proportional to the
magnetic field. In addition, Eq. (8) shows that the ratio

c® [yie(t) -1.] /Qi(t) remains constant during compression. However,
this ratio is according to Eq. () equal to the square of the ring
radius. Therefore, when the betatron flux condition Bo(t) =< Bit) >h
is satisfied the radius of the ring remains fixed, although the magnetic
field increases with time.

In the conventional betatron accelerators the required spatial
variation of the magnetic field is achieved by introducing ferromagnetic
material into the core region of the system. In a proton accelerator
the presence of ferromagnetic material is not desirable. A ferromagnetic
core in a proton accelerator would present rise time and saturation limi-
tations on the field as well as weight problems. However, a field con-
figuration having the proper radial nohuniformity can be easily be
achieved with air coils.

III. Orbit Stsbility in a Modified Betatron Field

In this section we analyze the stability of the single particle

orbit in a modified betatron field. In such a field configuration, an
aximuthal time independent magnetic field By is superimposed on a time
varying betatron field, such that, at r = ro the condition BO =%<pE>
is satisfied. The present analysis is not restricted to weak rings and
thus both the self electric and the self magnetic fields are included.
For rings with appreciable self fields, stable orbits exist only if the

Bg field is considerably higher than the initial betatron field Bo.




As shown in Fig. 1, the BG field is conveniently produced by passing an

axial current along the symmetry axis of the system and the betatron
4 . T field is generated by two concentric air coils having different diameters.

For the analysis, the external fields are taken as

B,(r,t) = B (t)(x /r)" ,

Br(r,z,t) = -nBZ(r,t)z/r i

Be(r) = B1 ro/r

. r sz(r')t) » »
and Byfrst) = - Fé-f e 5 (9a-d)

(¢}

L | where n is the external field index, By(r) is the field produced by the
? axial current I , Eg(r,t) is the induced electric field and (ro, zo)
are the coordinates of the average position of the particles forming the

ring. Note that Egs. (9a,b) are the expressions for the local field and

n is assumed constant and uniform over the ring.

r | To approximate the effects ofthe self fields we replace the ring
by a cylinder of radius a and length 2ﬂro. The magnitude of the total
k. | force due to the self electric and magnetic field a distance § from the

axis of the cylinder is

u 2 n.(t)
Fg(t) =%—§%6—(ﬂ- 5 s (10)

where ni(t) is the ion density in the ring, which is assumed uniform.




The total self fields of the ring can be represented by an equivalent

self electric field of the form

hﬂlelni(t)

§ - 5 A A
| Eselgr,z,t) = Y2 (F Br-ro) e, + (z—zo) ez] 5 (11)

A
where e, and éz are unit vectors in the r and z directions. Equation
(11) is a good approximation for large aspect ratio rings, i.e., when
> >
(ro/a) y B
We now perform a perturbation analysis using the external fields of
Eqs. (9) and the equivalent self field of Eq. (11). The particle veloc-

ity components are written in the form

] s +
vr(t) = Vor 6vr 7
: va(t) = v o(t) + 8v
E 5(£) = v g(t) + v, s
i and }
., AT RS AR T R NS el €T O L sz(t) iy Voz i 6vz =
;.: where v =V _, = O and the perturbations 5vr, bvg and 5vz are much
;:, smaller than Vg Substituting the above velocity components into the

relativistic orbit equations and keeping terms to first order in the

small perturbations we obtain

Q
d [¢)
b2 + .___' s
ds (Yoesvr) Yoo (Yoe (1-n ns) Sr

- 2
= -Ql 6vz - QO 'Yoe 6Ve ’
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a ( <
= (Yoe 5VZ) a7 \ Yoe> (n-ns)6z
= Oy 6vr 5 (13a-c)
"
where Yoo = [l-(voe(t)/C)z] & P

T o= : 02 . . . .
ng = w;i(t)/ [EYOS(t) O(tﬂ is defined as the self field index,

i
wpi = (b & ni(t)/Mo)8 A IelBl/Moc) and 8r, 8z are small spatial

perturbations about r_, Z, jee., Abrfdt = 5vr. It can be easily shown

(e]

from Eq. (9d) that (aEe/ar) = 0 when the betatron field condition is
b e "R i

o
satisfied. Hence from Eq. (13b) we see that the perturbed angular
velocity 8vg vanishes. Equations (13a) and (13¢c) can now be put into

the rather simple form

. X 0 3
51‘ i _O_e_ 61.‘ w* (.1)2 61‘ = = Sz 3
Yoe 11 Yoe
(14a,b)
Q 3
and 6% + S 82 + w2 82 = = br : 4
Yoe z Yoe

where a dot represents the operator d/dt, wi = (Qo/yoe)z (1—n-ns) and

wi - (Qo/yoe)z (n-ns). The above equations for the small displacements

9




8r and 8z about ry and z, are coupled through the azimuthal magnetic
field. The quantities Y g, Qo and n_ are assumed to be "weak" functions
of time compared to the cyclotron period.

The self field index n , can be expressed in terms of the field
reversal factor § = 'Bself/Bol where BSelf and BO is the self and ex-

|
ternal magnetic field at the inner surface of the ring. That is, %

w? r 3
n - = e e |
87 2Y85 2 Yoepod |

where Eoe = voe/c. Although § may be small (a few % field reversal) the

self field index can be large, ng >> 1. Since the magnitude of the

external field index is typically of the order of unity, [n| = 0(1), the

radial and axial betatron frequencies are approximately equal, that is,

u)i = wf‘ = wi(t) < o, (16)

Using (16), the condition for the orbits to be stable is shown in

appendix A to be given by
e2(t) < 1, (17)

where €2(t) = 40%/(01/2Yoe)2 > 0. The stability condition in (17)

written in terms of the self field index is n_ <(01/h0)2/h.

In the absence of a By field the orbits are stable if o < n <1
and n, < %. The total number of ions and current in the ring is

given by

10
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2
16 (8_) .3 2
Nion - 2 X 10 (ro) 09609 ns s

and (18a,b)

=
]

7 (&_\2 3
i 1.45 X 10 (ro, oea o0 Do .

where a and r are in centimeters and Iion is in amperes. Since the

field reversal index, number of ions and current in the ion ring is

proportional to the self field index, it is desirable, for stability
reasons, to have (Ql/ﬂo) initially as large as possible. 1
We now proceed to analyze the solution of the linearized coupled
orbit equations Egs. [(1’4 a,b)] when n_ > > 1 and |n|l = 0(1). To
facilitate the analysis we further assume that €2 < < 1. The solutions
of Eq. (14) under the above assumptions (see appendix A for a general

derivation) are

t
, et
-r §(t")dt - , ,
br = &° k& z ; a e if wn(o)(t )dt 5
= o

i (19a,b)

.oftb(t')dt’

4 -i s w(o)(t')dt' i3
b6z = e Z bne .f n s :

where

8(t) = B 5o (e®) , (20)

a s bn are constants determined by the initial conditions and wn(o) s

11
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the roots of the zeroth order dispersion relation

.

Since the frequencies wn(o) are all real the radial and axial dimensions
t
of the ring vary as exp !'é(t')dt' ~ 1+ [ez(t) - cz(o)] /e,

The cross sectional area of the ring at time t is, therefore, given by

2 (t) #Afo) {1+ e2(o) [e3(t)/e®(0)-11} (22)

where A(o) is the initial cross sectional area. Using the definition of
¢2(t) and the fact that the total number of particles in the ring is

ccenserved we find that

2(0)/e2(0) = [A(0) Yog(0)/a(E)yg(®)] - (23)

Combining (22) and (23), the cross sectional area as a function of time

is given by

A(t) = {1 - €2(0) [ - 1‘39(0) ] A(o)} . (a4)

of(t)

Thus, the area A(t) decreases as the magnetic field increases and is

. [1-e2(o)] (o) .

Furthermore the time evolution of the stability. factor ¢2 is

bcunded by the minimum value A(t)min

QO (o]

Y
e2(t) = :°2 ‘; {1 + ¢2(0) { . vO: 2 ]} €2(o0)

(25)

12
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and hence decreases with time. Therefore, the stability of the orbits
is improved and the mirror cross section of the ring is reduced during
compression.

IV. Discussion and Conclusions

The constrained or constant radius magnetic acceleration of a non-
neutral ion ring has two important advantages over the free or adiabatic
acceleration. First, the energy of the nonrelativistic ions increases
with the square of the magnetic field and second, the extraction of the
ions out of the compression system appears to be simpler than in the
free compression.

A magnetic field configuration that is suitable for constant radius
acceleration of an ion ring is the betatron field, that satisfied the
1:2 flux rule, i.e., the average magnetic field is twice the magnetic
field at the orbit of the gyratihg cﬁarged particle. However, the
orbits of the particles in a betatron field become unstable when the
self fields of the ring are not negligible. Specifically, the self
field index n [: wzi/ayoe(t)ﬂi(t)] must be less tham % in order for
the orbits to be stable. This imposses very stringent limitations on
the maximum current of the ring as may be seen from Eq. (18). For 1 MeV
protons forming a ring with an aspect ratio (ro/a) = 10 and n_ = %, this
equation states that the maximum current of the ring cannot exceed 10 A.
This difficulty is avoided by superimposing an azimuthal magnetic field
on the betatron field (modified betatron).

The Be field improves considerably the stability of the orbits and

permits ng > > 1, provided that ng < (01/200)2 , where Q, is the

15
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cyclotron frequency corresponding to the By field and Qo the cyclotron

frequency corresponding to the axial magnetic field at the orbit of the
particle.

In addition, the stability of the orbits is improved with the com-
pression because the self field index n < Y;% (t) 3;§(t) decreases with
time faster than the ratio (91/200)2 . The same conclusion is also
drawn from Eq. (25). Since neither the major nor the minor radius of
the ring varies with increasing magnetic field [See Eq. (24)] and since
the total number of ions in the ring is concered, Eq. (18a) states that
13 Y;g(t)ﬂ-ie(t). Substituting this expression for n_ in Eq. (15) we
obtain that_the field reversing factor { also decreases with increasing
field and is proportional to Y g(t).

yne present theoretical model is based on the assumption that the
radius of a typical gyrating particle is controlled by the external mag- : {4
netic field [see Eq. (1)]. Therefore, it is required that the field ; 4
reversal factor § << 1. Since C decreases with time, the validity of |
the model is improved with compression. For those applications requir-

ing field reversing magnetic field configurations, the field reversal

factor can be increased after the acceleration process by adiabatically
compressing it to a smaller radius.

When n5>> 1 or for arbitrary n when n — %, the betatron frequencies
w, ans w are equal. As a consequence of this fact the minor cross
section of the ring retains its original shape, which is assumed to be
circular. Thus, the equivalent electric field in Eq. (11) is a good
approximation, provided that the aspect ratio ro/a >> 1. As stated
above, for strong rings, i.e., when ng > 1, stability of the orbits

requires that the azimuthal magnetic field be much greater than the

L




axial field at t = o. For this reason in a practical device the proton

beam must be injected into the system along By and not along the sym-
metry axis of the system. It is rather unlikely that polarization
fields will introduce difficulties when the injected beam is space
charge neutralized because (BB/BO) >,

The preceeding analysis is also based on the assumption that the
ion ring is electrostatically and magnetically noneutral. For neutral-
ized rings the effect of the background electrons on the equilibrium as
well as on the stability of the ring must be included. The effect of
the electrons on the ion ring depends on the electronic invironment of
the ring, that is, whether the neutralized ion ring is in a vacuum or
submerged in a dense plasma.

When the ion ring is electrostatically neutralized by background
electrons occupying the same volume as the ion ring, the induced
electric field Ee, will produce a zeroth order guiding center drift of
electrons towards the axis. This inward radial drift of electrons sets
up a radial well as a Er X gz drift which tends to enhance the ion
current. The radial poclarization field, set up by the initial Ly x gz
drift, acts to pull the ions in radially if wpi/bo > > 1. However, the
presence of a large aximuthal magnetic field, such as Bgy> ~ Bz(t) re-
duces the radial drift of the electrons by the factor Bz(t)/Be <],
If, on the other hand, the ion ring is submerged in a dense plasma
background of density much greater than the ring density, the radial
polarization electric field set up by the Eg x Ez drift of electrons is

shorted out by the plasma electrons. Hence, the ion ring maintains a

fixed average radius as the axial magnetic field is increased.




B

The equilibrium and stability of ion rings in the presence of a
space charge neutralizing electron background is under investigation

with a particle simulation computer code.

prar—

Appendix A

In this appendix a general discussion of the solution to the orbit

equations given in Egqs. (1ll4a,b) is presented. Since Yoo> wrz and wz2
are assumed to be weak functions of time the solutions to (1lka,b) can

be written in the form

t

br = a e [ w(t)at’ . (A1)
o
8z = b et J‘tw(t')dt’ . (A2)

o

where a, b are constant and w(t') is in general complex. Substituting

(A1) and (A2) into Eqs. (1ka,b) and noting that |6¢! << |w2| we obtain

W? -w?)+iw (o 909 or = -iw fi—- 8z (a3)
r T + ,Ya.é_ = Yoe > s >
and
7 Y40 Q1
W2 - w3) + 1w R )}62 - iw §r (Ak)
{ 2 ( -~ Yoo Yoo -

P 2 [Yare 2 _ (Q 2 (n-
where W (Qo/voe) (1-n ns) and W = ( O/Yoe) (n ns).
Combining (A3) and (A4) and keeping only the lowest order terms in
the time derivatives of w and Yoe the following dispersion relationship

correct to first order in w/w2 and y/¥2 is obtained

16




2
Q2
W@ -ud) o7 -ad) - ()
'Yoe
. Y e
+iw [2w2 - w2 - mi] (:’—+ ﬁ) = o. (a5)
O
We now let w = w(°)+w(1) " (a6)

where |w( )l << }w(o}is such that it satisfied the following

zeroth order time dependent dispension relation

[(w(o))z it wi] [(w(o))z -

Substituting A(6) into (A5) and using (A7) we arrive at the following

(1)

- @2 @m0, @)

(R

expression for w

[2(w(o))2 » L*(Q /2Y 1L(O)/w 4 Y /Yoe] » (85)

2(w

(1)

S
=k

where vZ = wi + wzz + h(01/2yoe )2 and () is given by the solution

of (A7). The four solutions of Eq. (A7) are

wi?z =+ (;% + v - hwrz wzi)% / ‘;2 . (A9)

.




and

(0) =& 2 vé 2 %
W) v ‘) » )““’rz‘”z /42 ) (A10)
2 .
The relations in (A8-10) together with (Al) and (A2) formally describe

the linear evolution of the perturbed orbits.

2 and wzz, we see from Egs. (A9) and

Noting the definitions of wr
(A10) that stability is achieved if the following inequalities are

satisfied

a <% [1 + (ﬂl/ﬁo)a‘] ’ (a11)

and

2
[(1 - 2n) + (01/00)2] >4 (n-n ) (1-n-n.)>o. (A12)

In the special case where n_ = Q31 -0 stability is implied if

s n< i (A13)

The inequality in (A13) is the well known stability condition for a
single particle in the absence of a By field. IfQ; = o and nsf (o

the orbits are stable if

<y , (A1)

S

is satisfied together with

n(1-n) < % (A15)




However, when n, =0 and Q1 # o the candition for stability is the same

as when n_ = Q1 = o, that is, the external field index must satisfy (A13).

Hence, in the absence of self fields the regime of stability is not in-
creased by the introduction of an azimuthal magnetic field. A situation
of somewhat more practical importance is when the self field index is
much greater than unity, i.e., ng > > 1 and the external field index is
of the order of unity, |n] = 0(1). For this case the stability condi-
tion is given by

Q;\2
o <ilg) - (a16)

O

When n, >> 1, the radial and axial betatron frequencies are approxi-
mately equal, i.e., w§= w§= wi . The stability condition in (A16)
can then be stated in the form €2 < 1 where €2 = wi/(ﬂl/2voe)2. To
obtain explicit expressions for m(o) and w(l) from Eqs. (A8) and (A9),
we consider the case where n_ > > 1, |n| = 0(1) and €2 < < 1, which

corresponds to a dense, stable ring. The zeroth order frequencies in

(A9) and (A10) for this case are

Q
) slplern) . wm

and

Q
w3(°j _7F (2Y:9) %2 % (a18)
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Substitution of (A17) and (A18) yields the single first order frequency

. w ' ;
E (o] (o]

From Eqs. (A19) we see that the amplitude of the linear oscillations has

exp [(sg(t) - ez(o)/h] 3

the form
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Fig. 1 — Schematic drawing of an apparatus that can be used for the magnetic acceleration
of a proton ring. The B, field may be produced by the current I flowing in the center con-
ductor is independent of time. In the laboratory, the B, field may be produced conveniently
with toroidal windings. The B, and B, fields vary with time and are produced by the two sets
of concentric coils. In the proposed scheme, not only the major radius r,, but to a good ap-
proximation also the minor radius of the ring remains constant during acceleration.
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